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Water Stress and Mycorrhizal Isolate Effects
on Growth and Nutrient Acquisition of
Wheat

G. N. Al-Karaki,a A. Al-Raddad,b and R. B. Clarkc

aDepartment of Plant Production, Jordan University of Science and
Technology, P. O. Box 3030, Irbid, Jordan
bDepartment of Plant Protection, University of Jordan, Amman, Jordan
cAppalachian Soil and Water Conservation Research Lab, U. S. Department of
Agriculture, Agricultural Research Service, P. O. Box 400, Beaver, WV
25813-0400

ABSTRACT

Arbuscular mycorrhizal (AM) colonized plants often have greater tolerance to
drought than nonmycorrhizal (nonAM) plants. Wheat (Triticum durum Desf.),
whose roots were colonized with Glomus mosseae (Gms) and G. monosporum
(Gmn), were grown in a greenhouse to determine effects of water stress (WS)
on shoot and root dry matter (DM), root length (RL), and shoot phosphorus
(P), zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe) concentrations and
contents. Mycorrhizal colonization was higher in well-watered (nonWS) plants
colonized with both AM isolates than WS plants, and Gms had greater
colonization than Gmn under both soil moisture conditions. Shoot and root
DM were higher in AM than in nonAM plants irrespective of soil moisture,
and Gms plants had higher shoot but not root DM than Gmn plants grown

891

Copyright © 1998 by Marcel Dekker, Inc.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

] 
at

 0
5:

36
 0

6 
A

pr
il 

20
15

 



892 AL-KARAKI, AL-RADDAD, AND CLARK

under either soil moisture condition. Total RL of AM plants was greater than
nonAM plants, but was consistently lower for plants grown with WS than
with nonWS. The AM plants had similar shoot P and Mn concentrations as
nonAM plants, but contents were higher in AM than in nonAM plants. The
AM plants had higher shoot Zn, Cu, and Fe concentrations and contents than
nonAM plants. The Gms plants grown under nonWS generally had higher
nutrient contents than Gmn plants, but nutrient contents were similar for both
Gms and Gmn plants grown under WS. The results demonstrated a positive
relationship between enhanced growth and AM root colonization for plants
grown under nonWS and WS.

INTRODUCTION

Symbiotic associations of plant roots with AM fungi often result in enhanced
growth because of increased acquisition of P and other relatively low mobile mineral
nutrients, especially Zn and Cu (Davies et al., 1992; Fitter, 1988; Kwapata and Hall,
1985; Marschner and Dell, 1994). Greater acquisition of Mn and Fe has also been
reported in AM plants (Al-Karaki and Al-Raddad, 1997; Clark and Zeto, 1996b;
Davies etal., 1992;Rajuetal., 1987). Effective nutrient acquisition by AM plants
is generally attributed to the more extensive external hyphal growth beyond the
nutrient depletion zone surrounding roots (Brady, 1984). The AM fungal
associations with plant roots may enhance not only growth and mineral nutrient
acquisition, but also increase tolerance of plants to drought stress (Davies et al.,
1992; Ellis etal., 1985; Ruiz-Lozano etal., 1995).

In many semiarid regions of the world, wheat production is limited by drought.
Soil and crop management practices that increase availability of native or applied
nutrients could enhance wheat production under these conditions. Symbiotic
interactions between AM and roots of host plants grown under limited water
could potentially enhance crop productivity. Plant growth responses to symbiotic
root-AM fungi have been related to such factors as AM isolate, plant species/
cultivar, and growing conditions (Bryla and Koide, 1990; Jakobsen et al., 1992;
Ruiz-Lozano et al., 1995). S ince individual AM isolates may infect wide ranges of
unrelated plant species, the lack of AM specificity may result in considerable
variation in symbiotic root-AM responses (Ianson and Linderman, 1991;
Ruiz-Lozano et al., 1995). Knowledge about specific responses of given fungal
isolates to plant productivity is important for successful utilization of symbiotic
root-AM relationships. If tolerance of plants to drought differs with AM isolate
with which plants are associated (Ruiz-Lozano et al., 1995), it is important to
determine effective host plant root-AM fungal combinations for practical use in
the field. Information is limited about effective host plant root-AM fungal
combinations under drought conditions.

The objective of our study was to compare the effects of two AM isolates on
growth and nutrient acquisition by wheat grown under nonWS and WS.
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WATER STRESS AND MYCORRHIZAL ISOLATE EFFECTS 893

MATERIALS AND METHODS

A silty clay soil (fine, mixed, thermic, Typic Xerochrept) was thoroughly mixed
with fertilizer (30 mg N kg'1 soil) and washed cement grade sand (soil:sand, 1:1),
enclosed in air tight plastic bags, and fumigated with methyl bromide for 3 days.
The bags were opened to the atmosphere (frequently stirred) to dissipate methyl
bromide for 10 days, after which soil mixes were put in plastic pots (4.5 kg soil pot1)
for plant growth. Properties of the soil before mixture with fertilizer and sand were
6.5% sand, 45.0% silt, and 48.5% clay; 1.2% organic matter; pH 8.1 (soil:water, 1:1);
8.0 P (NaHCOj-extractable) in g kg"1 soil; and 25.7 Mn, 11.2 Fe, 1.5 Zn, 1.7 Cu (5 mM
DTPA-extractable) in mg kg-1 soil. No additional P was added to soil mixes. The
AM treatments were: Glomus mosseae [(Nicol. and Gerd.) Gerd. and Trappe]
(Gms), G. monosporum (Gerd. and Trappe) (Gmn), and no inoculum (nonAM
control). The AM inoculum consisted of root fragments [AM colonized with
chickpea (Cicer arietinum L.) roots] and spores mixed with soil to provide 42 and
47 chlamydospores in 100 g dry soil for Gms and Gmn cultures, respectively. The
AM inocula were placed 3 cm deep in 10 cm diameter holes in the center of pots
prior to planting.

Seeds of the durum wheat cultivar (Hourani-27) were planted near the center of
each pot and placed in a greenhouse for growth [natural light at 28±6°C
(March-May)]. Seven days after emergence, seedlings were thinned to four per
pot. Plants were watered daily until WS treatments were initiated 21 days after
planting. The WS was imposed by withholding water from pots until a soil water
potential of-0.13 MPa (40% of soil water holding capacity) was achieved. Pots
with nonWS were maintained at soil water potential of-0.05 MPa (80% of soil water
holding capacity) through daily weighing. Thereafter, water was maintained at this
level by weighing pots daily and adding appropriate amounts of water. Soil water
potential was determined with a pressure plate apparatus, and soil water content
was determined by weighing samples before and after drying.

Experiments were terminated by severing shoots from roots 55 days after planting
(10-12-leaf stage), and shoots were dried and weighed. Roots were rinsed free from
soil, cut into 1 cm fragments, thoroughly mixed, and subsamples of fresh roots
saved for determination of AM root colonization and total RL. The remainder of
roots were dried and weighed.

Root samples for determination of AM root colonization were cleared with 1.78
M KOH and stained with 0.52 mM trypan blue in lactophenol (Phillips and Hayman,
1970), and microscopically examined for colonization by determining percentage
root segments containing arbuscules+vesicles using a gridline intercept method
(BiermanandLinderman, 1981). Total RL was determined using the gridline intersect
method of Newman (1966). Roots used to determine colonization and RL were
dried, weighed, and added to the total.

Dried shoot material was ground to pass 0.5 mm sieve in a cyclone laboratory
mill, weighed into ceramic crucibles, ashed overnight at 550°C in a muffle furnace,
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894 AL-KARAKI, AL-RADDAD, AND CLARK

and the ash suspended in 2M HC1 for determination of mineral nutrients.
Phosphorus was determined colormetrically (Watanabe and Olsen, 1965), and Zn,
Cu, Mn, and Fe were determined by atomic absorption spectroscopy.

The experimental design was randomized complete blocks with factorial
arrangements of treatments with WS treatments (WS and nonWS) as main plots
and AM isolates (Gms, Gmn, and nonAM) as sub-plots with four replications.
Data were statistically analyzed using analyses of variance in the MSTATC
(Michigan State Univ., East Lansing, MI). Probabilities of significance were used
to indicate significance among treatments and interactions and LSDs (PO.05)
were used to compare means within and among treatments.

RESULTS AND DISCUSSION

Nearly all WS and AM treatment effects were significant for the growth and
nutrient acquisition traits (Table 1), but the only significant WS*AM interaction
was for AM colonization.

Root colonization did not occur for plants provided no AM inoculum. Substantial
AM root colonization occurred for plants inoculated with the AM isolates, and
plants grown under nonWS had higher colonization than plants grown under WS
(Figure 1). Colonization was significantly higher for Gms than for Gmn plants
grown under nonWS, but not under WS.

Shoot and root DM were higher for AM than for nonAM plants grown under
both nonWS and WS (Figure 2). However, AM plants grown under WS had lower
shoot and root DM than AM plants grown under nonWS. The Gms plants had
higher shoot DM than Gmn plants grown under nonWS, but was similar when
grown under WS. Root DM was similar for Gms and Gmn plants grown under
either nonWS or WS. Shoot/root DM ratios were not significantly affected by AM
colonization, but this ratio was higher for plants grown under WS than under
nonWS (Figure 2). Total RL of AM plants was no different for nonAM plants
grown under either nonWS or WS, but was higher for plants grown under nonWS
than under WS (Figure 3).

Shoot P and Mn concentrations were similar for AM and nonAM plants grown
under both nonWS and WS, while shoot concentrations of Cu and Fe were generally
higher for AM than for nonAM plants grown under both nonWS and WS (Figure
4). Shoot concentrations of Zn were higher for plants grown under WS, but not
under nonWS (Figure 4). In addition, shoot concentrations of Zn, Cu, and Fe were
generally higher for AM plants grown under WS than under nonWS. Shoot
concentrations P, Zn, Cu, Mn, and Fe were similar for Gms and Gmn plants grown
under either nonWS or WS. Shoot contents of P, Zn, and Cu were higher for AM
than for nonAM plants grown under nonWS, and shoot contents of P, Zn, Cu, and
Fe were higher for AM than for nonAM plants grown under WS (Figure 4).
Manganese contents were not significantly higher for AM compared to nonAM
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WATER STRESS AND MYCORRHIZAL ISOLATE EFFECTS 895

TABLE 1. Probabilities of significance for growth traits, root
colonization with mycorrhiza (AM), and mineral acquisition traits for
wheat grown with and without water stress (WS).

Trait

Shoot dry matter (DM)

Root DM
Shoot/root DM ratio
Total root length (RL)
AM colonization with roots

P concentration

P content
Zn concentration

Zn content
Cu concentration
Cu content

Mn concentration

Mn content
Fe concentration
Fe content

WS

*• •

• •

• •

*

« •

**

• •

*»

**

•

*

AM

**

**

**

*
* •

• •

**

*

*

"*=significanceatP=0.05and**=significanceatP=0.01.
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FIGURE 1. Percentage colonization of wheat roots with the arbuscular mycorrhizal
isolates G. monosporum (Gmn) and G. mosseae (Gms) for plants grown in soil without
water stress (nonWS) and with water stress (WS). The I represents LSD at P=0.05.
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896 AL-KARAKI, AL-RADDAD, AND CLARK
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FIGURE 2. Shoot and root dry matter (DM) and shoot/root DM ratios of nonmycorrhizal
(nonAM) and mycorrhizal (Gmn = G. monosporum and Gms = G. mosseae) wheat grown
in soil without water stress (nonWS) and with water stress (WS). The I represents LSD at
P=0.05.

plants grown under either nonWS or WS (Figure 4). For plants grown under WS
and nonWS, contents of P, 2'n, Cu, and Fe were generally higher for Gms than for
Gmn plants.

Shoot and root DM were enhanced in AM wheat grown under both nonWS and
WS even though the enhanced growth was not proportional to the AM root
colonization. Nevertheless, a positive relationship was noted between DM
enhancement and degree of root colonization. Enhancements in DM relative to
increased percentage of AM root colonization are sometimes not related (Ahiabor
andHirata, 1994; Clark and Zeto, 1996a; Davis etal., 1983;E1-Kherbawyetal., 1989;
Hayman and Tavares, 1985; Medeiros etal., 1994). Even so, growth enhancements
due to AM root colonization might be attributed to enhanced photosynthetic rates
associated with increased P (Dietz and Foyer, 1986). The enhancement of shoot
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FIGURE 3. Total root length (RL) of nonmycorrhizal (nonAM) and mycorrhizal (Gmn =
G. monosporum and Gms = G. mosseae) wheat grown in soil without water stress (nonWS)
and with water stress (WS). The I represents LSD at P=0.05.

and root DM for plants with AM-root associations was lower under WS compared
to nonWS in our study, and might be attributed to reduced AM root colonization
and low P acquisition by plants grown under WS. Percentages of roots colonized
by AM were considerably lower under WS than under nonWS. Decreased AM
colonization of cowpea [ Vigna unguicula (L.) Wolp subsp. unguicalate] roots
under WS was also reported (Kwapata and Hall, 1985).

Several factors such as host plant, AM isolate, and soil environment can
influence effectiveness of root-AM symbioses. It is important to understand and
manipulate these factors to optimize plant growth responses to AM. It may also be
necessary to select AM isolates best adapted to the environment in which a plant
species is to be grown. Isolates of AM fungi differ in ability to enhance plant
growth (Clark and Zeto, 1996a; Fitter, 1985;Medeirosetal., 1994;Ruiz-Lozanoet
al., 1995). Specific AM isolates may be related to ability of AM to colonize with
roots (Abbott and Robson, 1982) and for production of external hyphae to enhance
P and water acquisition (Davies et al., 1992). Even though the AM isolates used in
our study differed relative to root colonization, the differences in colonization
between these isolates were significant only under nonWS conditions. Shoot and
root DM of plants grown under WS and nonWS were improved by root colonization
with either AM isolate used in our study. The Gms plants had higher percentages
of root colonization than the Gmn plants, and the effectiveness in promotion of
plant growth was also greater for Gms than for Gmn plants grown under nonWS.
Al-Momany (1987) reported G. mosseae to have more favorable effects on plants
than G. monosporum relative to shoot or total plant weight, and Ellis et al. (1985)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

] 
at

 0
5:

36
 0

6 
A

pr
il 

20
15

 



898 AL-KARAKI, AL-RADDAD, AND CLARK

reported that G. fasciculatum had no advantage over G. deserticola relative to
wheat grown under WS. No differences were noted between the two AM isolates
used in our study for promoting plant growth under WS. However, our results
demonstrated a positive relationship between plant growth and AM root
colonization for plants grown under both WS and nonWS.

The AM plants generally had higher shoot P, Cu, Zn, and Fe contents than
nonAM plants grown especially under WS. The enhanced accumulation of these
nutrients might have been because of increased availabilities or transport
(absorption and/or translocation) by AM hyphae. Enhanced acquisition of P, Zn,
and Cu by AM plants has been commonly reported (Kwapata and Hall, 1985;
Marschner and Dell, 1994; Trimble and Knowles, 1995). However, AM root
colonization did not significantly affect Mn concentrations and contents in plants
grown under nonWS or WS. The uptake and translocation of Mn might have been
antagonized by P, Cu, and/or Zn (Olsen, 1972), whose contents are commonly
enhanced by AM. Nevertheless, reduced acquisition of Mn (and Fe) by AM
plants has been reported (Kothari et al., 1991; Mohammad et al., 1996). Zinc and Cu
concentrations were affected little by AM root colonization under nonWS compared
to WS, indicating that AM fungi appeared to be important for acquisition of Zn
and Cu under dry soil conditions.

The AM fungal isolates used in our study may differ in ability to enhance
nutrient acquisition and/or growth of host plants. The Gms plants had higher
shoot mineral nutrient contents (and in some cases concentrations) than Gmn or
nonAM plants regardless of soil moisture. This may have occurred because Gms
plants had higher absorption surface areas offered by the fungal hyphae to enhance
nutrient acquisition and increase root growth. That is, it might be assumed that
higher AM root colonization would result in more extensive fungal hyphae out in
the soil.

Shoot contents of most mineral nutrients could be accounted for by increased
shoot DM. Changes in shoot contents of most mineral nutrients in AM plants
compared to nonAM plants were similar to changes in shoot DM. Only Mn
contents were not affected by AM root colonization. From these results, more
effective P acquisition due to symbiotic interactions with effective root-AM could
be a plausible explanation for the enhanced growth of Gms wheat grown under dry
soil conditions. In addition, Gms plants accumulated higher total shoot P than
Gmn plants grown under nonWS. Root colonization with either AM isolate did not
influence shoot P concentrations of wheat grown under nonWS and WS. This
probably occurred because of dilution from enhanced growth (Jarrell and Beverly,
1981). Even though P, Cu, Zn, Mn, and Fe contents in Gms plants were similar to
Gmn plants grown under WS, P and Cu contents were greater in Gms than in Gmn
plants grown under nonWS. Differences among AM isolates for enhanced mineral
nutrients have been noted with different plant species (Clark and Zeto, 1996b;
Medeirosetal., 1994;Rajuetal, 1987;Ruiz-Lozanoetal., 1995; Trimble and Knowles,
1995).
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FIGURE 4. Shoot concentrations and contents of P, Zn, Cu, Mn, and Fe of nonmycorrhizai
(nonAM) and mycorrhizal (Gmn = G. monosporum and Gms = G. mosseae) wheat grown
in soil without water stress (nonWS) and with water stress (WS). The I represents LSD at
P=0.05.
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900 AL-KARAKI, AL-RADDAD, AND CLARK

The response of wheat to different AM isolates depended on soil moisture. The
AM isolates may need to be evaluated under other soil environments to determine
those that should be used to optimize beneficial effects on growth and productivity.
In addition to soil moisture, environmental factors such as soil pH (Clark and Zeto,
1996a, 1996b; Medeiros et al., 1994) need to be evaluated for root-AM effectiveness.
The results of our study illustrated that AM fungi are important for growth and
nutrition of plants when grown under nutrient stress environments.
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